
Chapter 1

Software Components

Editor(s): Silvestris, Yagil

1.1 Overview

Editor(s): Lucia, Avi

FIXME: one page, the current content need to be changed

Short description of the frameworks. Briefly describe COBRA here and cite previous
reports, since COBRA is used extensively in the PTDR studies. Then also describe the
new framework and event data model in general terms, with full details in Appendix ??.

1.2 Software Domain Decomposition

Editor(s): Lucia, Avi

FIXME: one page

1.3 Framework

Editor(s): Liz,

1

2 CHAPTER 1. SOFTWARE COMPONENTS

FIXME: in total 7 pages

1.3.1 Introduction

The primary goal of the CMS Framework and Edm is to guide developers into produc-
ing reconstuction and analysis software that is easy to use. For example developers are
encouraged to make their persistent objects as simple as possbile in order to completely
remove the need for analysis ntuples and the code used to make them. All results should
persist in a form directly suitable for analysis purposes. Automation is another way to
insure consistency and ease of use. The Framework provides ways to guarantee repro-
ducibility, by automatically maintaining and recording sufficient provenance information
for all application results so that the developers don’t have to.

1.3.2 Design Principles

The design of the core software was guided by a set of requirements intended to make it
easier for physicists to contribute to the trigger and reconstruction programs, to simplify
(event) data management, and to make analysis of reconstructed data reproducible.

One guiding requirement was the need allow independent development and verification
of distinct elements of triggering, reconstruction, and analysis. The concept of an event-
processing module, each of which encapsulates a unit of clearly defined event-processing
functionality, was introduced to support this goal Such modules are not allowed to com-
municate directly with each other, which allows them to be independently tested and
reused.

A second guiding requirement was to avoid the need for physicists performing analysis to
write their own ntuples. To support this goal, the natural persistent form of the event
data (see 1.3.5.1) was made to be a a Root tree. Restrictions on the form of the products
of the trigger and reconstruction programs are enforced so that this may be achived. This
format allows those who want to use Root to perform analysis to use the output of the
reconstruction program directly, and decreases the need for physics groups or individuals
to create their own ntuple formats, and so decreases the need for special data handling of
such ntuples.

The third guiding requirement was to assure that analyses are reproducible; to support
this goal, two steps were taken. First, once the product of any step of triggering or
reconstruction is put into the Event that that object is considered immutable. Second,
the event processing application has been made to automatically record the necessary
provenance information (see 1.3.6.5) for each element of reconstruction, without the need
for physicists writing reconstruction code to take any special action.

2

1.3. FRAMEWORK 3

1.3.3 Major Components

The EDM framework design is based on layers. At the highest layer is the EventProcessor .
The EventProcessor ’s job is to initialize the job and then process the requested number of
Events. The EventProcessor parses the configuration information provided by the user,
creates the unscheduled framework modules which are listed in the configuration and
then uses the ScheduleBuilder to create the scheduled modules and the internal memory
structure that represents the schedule of modules to be executed for each Event. The
EventProcessor uses the ScheduleExecutor to run the sequence of Event based modules
and uses the EventSetupProvider to manage all the non-Event data services.

1.3.4 Services

To be able to fully process an Event requires additional information outside of the Event
itself (e.g. , magnetic field measurements). The Non-Event data is data whose ’interval
of validity’ (IOV) is longer than one Event. We have two types of IOV s which are dis-
tinguished by whether or not the DAQ system initiated the interval of validity transition.
IOV s initiated by DAQ (such as the Event or a Run transition) are to be handled by the
Event system. All other IOV s are handled by the EventSetup System. The EventSetup
system provides a unified access model for all services that deliver Non-Event data.

1.3.4.1 EventSetup System

AECal Calibration

Pixel Calibration A
B

Run A B
Event

AECal Alignment

APixel Alignment B

B
A
A
A

EventSetup

time

Figure 1.1: The EventSetup is formed from the Records that have an IOV that overlaps
with the moment in time that is being studied.

The EventSetup provides a uniform access mechanism to all data/services constrained by
an IOV . Figure 1.1 shows the main concepts for the EventSetup, which are:

1. Record : holds data and services which have identical IOV s.

3

4 CHAPTER 1. SOFTWARE COMPONENTS

2. EventSetup: holds all Records that have an IOV which overlap with the ’time’ of
the Event being studied.

1.3.4.2 EventSetup

The EventSetup C++ class provides access to the various Records it contains. If the
requested Record is not available, a C++ exception will be thrown and the Framework
will take appropriate action. In this way physicists can safely assume that the Record
they want exists. In addition to access to Records, the EventSetup provides access to
information about the ’instance in time’ for which the EventSetup is describing (e.g., the
run and event number).

1.3.4.3 Records

Records provides safe, read-only access to the objects it contains. This is done in a method
analogous to data access from the Event . A Record also provides access to its interval of
validity (IOV).

1.3.4.4 Contents of a Record

The EventSetup system sets no requirements on the C++ class of an object which may
be placed in a Record . The only restriction is the lifetime of the objects within a Record
is only guaranteed to be as long as the IOV for which the Record is appropriate (e.g., if
the IOV of the data is only good for one run, then the object holding the data is only
guaranteed to be available for that one run). This does not mean that an object within
a Record can not be reused across an IOV transition (e.g., from one run to the next), it
only means code that reads the object from a Record should not assume that it will be
reused.

In the case where the C++ type of a data or service is only meant to come from one
Record (the ECAL pedestals data only come from the ECAL pedestal Record), then the
’default’ Record can be declared at compile time. If a ’default’ Record has been declared
for the C++ class holding some data, then users can access that data directly from the
EventSetup without having to specify the Record . E.g., a physicist can ask for the ECAL
pedestal data directly from the EventSetup rather than first asking the EventSetup for
the ECAL pedestal Record and then asking that Record for the data.

4

1.3. FRAMEWORK 5

1.3.4.5 EventSetup System Components

The EventSetup system design uses two categories of components to do its work: ES-
Source and ESProducer . These components are configured using the same configuration
mechanism as their Event counterparts, i.e., via the ParameterSet system.

ESSource: An ESSource is responsible for determining the IOV of a Record (or a set of
Records). The ESSource may also deliver data/services. An ESSource normally reads its
information from a ’persistent store’ (e.g., a database) although it is not required to do so.
E.g., the ECAL pedestals will be delivered via an ESSource that reads the appropriate
values from a database.

ESProducer : Conceptually, an ESProducer is an algorithm whose inputs to its algorithm
are dependent on data with IOV s. The Producer’s algorithm is run when ever the IOV
of the Record to which it is placing data changes. E.g., an ESProducer is used to read
the ideal geometry of the tracker as well as the alignment corrections and then create
the aligned tracker geometry from those two pieces of information. This ESProducer is
told by the EventSetup system to create a new aligned tracker geometry whenever the
alignment changes.

1.3.4.6 Dependent Records

Sometimes an algorithm in the EventSetup is dependent on data coming from more than
one Record . For example, the aligned tracking geometry is dependent on the ’ideal ge-
ometry’ and on the tracking alignment values. In such a case, the Record used by that
algorithm needs to be declared ’dependent’ on the other Records.

The IOV of a dependent Record is the intersection of the IOV of all the Records to which
it depends. E.g., the IOV of the aligned tracking geometry must change when either the
IOV of the ideal geometry or of the alignment values changes. The EventSetup system
guarantees that the proper relationships between the IOV s is preserved.

Dependent Records allow access to only those Records to which they are dependent. In
this way, the IOV dependencies between Records can be enforced (if you can not read
data from another Record then you can not be dependent on that Record).

1.3.5 Data Access Model

The data access model is centered around the Event. The Event holds all data that was
taken during a ’physics event’ as well as all data derived from the taken data. Auxiliary
information needed to process an Event is accessed via the EventSetup.

5

6 CHAPTER 1. SOFTWARE COMPONENTS

Events are processed by passing the Event through a sequence of modules. The exact
sequence of modules is specified by the user. When an Event is passed to a module, that
module can get data from the Event and put data back into the Event. When data is put
into the Event, the provenance information about the module that created the data will
be stored with the data into the Event.

1.3.5.1 Event

The Event class1 represents the observed and inferred products of a single interaction in
the CMS detector. The Event is responsible for managing the lifetime of, and relationships
between, it contents. The contents of the Event can include objects representing the raw
detector output, reconstruction products, simulation products, and analysis objects relat-
ing to a single beam crossing or simulation thereof. The Event also contains metadata,
describing the configuration of the software used for the reconstruction of each contained
data object, and the conditions and calibration data used for such reconstruction.

The Event class provides the mechanism through which trigger, reconstruction, simu-
lation, and analysis codes obtain their input. “Modules” performing discrete steps of
the triggering, reconstruction, or simulation of event data communicate by obtaining the
inputs from, and putting their outputs into, and Event.

Elements of “event data” put into the Event are called EDProducts. There is no actual
class EDProduct ; rather, EDProduct is a generic programming concept. An object of
almost any type can be used as an EDProduct ; the only formal requirements (enforced
by the code) on the type are:

• the type must be default-constructible,

• the type must be copyable, and

• the type must be destructible.

1.3.5.2 Module types, communication

The purpose of a module is to encapsulate a unit of clearly defined event-processing
functionality, in an independently testable and reusable package.

1.3.6 General Characteristics

Here are some characteristics of Modules :

1In C++, a class bundles together some amount of data with the set of functions relevant for manip-
ulating those data.

6

1.3. FRAMEWORK 7

Modules is the generic term for all “workers” in the framework. Not all modules have the
same interface.

Modules are scheduled by the ScheduleBuilder, and invoked by the ScheduleExecutor.
Each Module instance is configured with a ParameterSet.

Modules must not interact directly with (i.e. call) other modules.

Only Modules are “configurable.” An internal algorithm is configured by “percolating”
ParameterSets to the algorithm, by the Module that contains the algorithm. In order to
provide for modular testing, which is important for quality assurance of the physics results,
we require that modules communicate only through the Event, by putting EDProducts
into the Event. Furthermore, we require that one may “cut” the event-processing chain
between any two modules, and save the state of the event at that instant. This requires
that all EDProducts be persistable.

While each EDProductmust be persistable, this does not imply each one must be persisted
for every event. The event output mechanism must be capable of selective writing of ED-
Product instances to several output streams.

Here is a (possibly non-exhaustive) list of framework module types:

• event data producers—reconstruction, and simulation

• mixing

• output

• filter

• analyzers (read-only)

Note that input provided by a service, not by a module.

1.3.6.1 Scheduler, Paths

We will support two different “styles” of event-processing application in the same software
framework. One style of application supports reconstruction on demand, in the style of
the previous orcaframework. The other style is more similar to the style of the CDF
and DO trigger and reconstruction frameworks. We call these styles unscheduled and
scheduled.

1.3.6.2 Commonalities

For both the unscheduled and the scheduled applications, EDProducer instances are the
objects that actually perform the task of reconstruction. An author of an EDProducerdoes
not need to choose to support one or the other style of use; any EDProducer is able to be
used in either mode.

7

8 CHAPTER 1. SOFTWARE COMPONENTS

For both styles of application, the same EDProductclasses are used, and the same ED-
Product instances will be produced from identically-configured EDProducers.

For both styles of application, the same parameter set system is used to configure the
EDProducers.

For both styles of application, the same input and output formats are supported.

1.3.6.3 The Unscheduled Application

In the unscheduled application, the action of requesting an EDProduct from the Eventmay
cause the invocation of an EDProducer. The high-level view of the mechanism is:

1. User code requests an EDProductthrough the Event::get member template, pos-
sibly specifying a selector.

2. The Event looks for any already-created objects of the correct type (and that match
the selector, if one was provided). Such objects may be already loaded in memory,
or may be retrieved from the input source.

3. If no match was found, the Eventqueries a registry of EDProducers to discover which
ones are able to create EDProducts of the correct type (and which could match the
provided selector, if any). If no such matches are found, the user will receive an
indication that no match is available. No new libraries can be loaded at this time.

4. Any EDProducers found in step 3 are invoked, creating their products and entering
them into the Event, and possibly causing a cascade of other reconstruction.

5. Any EDProducts generated from the EDProducers just invoked are returned to the
user. If no appropriate producers were found, no products may be returned.

An unscheduled application is configured by specifying:

• a selection of independent top-level EDProducts to be written out, or

• a selection of independent high-level triggers to be run, or

• an analysis module to be run, or

• some combination of the above.

and also

• the menu of EDProducers that should be known to the registry of EDProducers.

The combination of EDProducts in the input source and EDProducers registered in the
program are the only things that limit the variety of EDProducts than can be obtained
from any Event.

8

1.3. FRAMEWORK 9

1.3.6.4 The Scheduled Application

A scheduled application is configured by specifying a module instance path through which
the event will flow. More derived or calculated products will be added to the event as it
moves through the path.

The responsibility of getting the proper dependency ordering within an explicitly specified
path lies with person configuring the job. However each path can be though of indepen-
dently. It is the job of the framework to optimize the schedule given a set of fully self
contained reconstruction paths.

1.3.6.5 Provenance

It is critical for users to be able to unambiguously identify how each reconstruction result
was produced. There are several varieties of information that constitute this identification.

Collectively, we refer to all this information as the provenance of the EDProduct. Each
EDProduct is associated with a Provenance object that records this information. Where
appropriate, Provenance objects are shared between EDProduct instances.

1. Module configuration

(a) The unique identifier representing all (the names and values) of the run-time
configuration parameters given to the module.

(b) A string giving the fully-qualified class name of the module.

2. Parentage

A vector of the unique identifiers of the EDProducts used as inputs for this bit of
reconstruction.

The identifiers are unique to the event. It is possible to maintain common identifier
lists and tag those with an ID and only record.

Although a module can make use of more than one input to create its output, we
make no attempt to specify the type of the EDProduct to which each of the entries
in this vector refer. If such identification is needed in a particular EDProduct, that
product can store the information in its own member data. We rejected providing a
mapping of class name to EDP id because we deemed the complexity unwarranted
for the simple use to which the “parentage” information, in this general form, is
put.

3. Executable configuration

9

10 CHAPTER 1. SOFTWARE COMPONENTS

(a) A “human friendly” string called a module label, which is a unique identifier
(within a job) used for EDProducts created by the module configured by this
label. This label comes from a module configuration parameter with a fixed
name. Each module has exactly one of these.

The label configuration parameter is special. Changing the label in the con-
figuration will cause a new module to come into existence because a unique
ParameterSet determines module instances. However, the label is not part of
the permanently generated ID.

(b) A single version number that defines the code for the entire executable. The
user can obtain specific library version numbers by querying a central database,
using this version number.

The value is only meaningful for tagged releases.

This number specifies which libraries were available when building the appli-
cation; it does not indicate that all such libraries were used.

4. Conditions Data

An identifier representing the calibration and alignment set that was used in the
construction of this EDProduct.

We assume here that calibration and alignment are handled in the same way and
that this single, high-level identifier refers to all the calibration information used
for this event. It is possible that individual calibrations (e.g. , silicon, calorimeter,
muon) will also have IDs associated with them and that each of these will need to
be recorded instead of the “set” ID.

Other conditions data IDs may also be needed here, such as geometry version or
hardware configuration.

5. Job configuration

A physical process name. A job starts up in a particular context such as HLT or
Reconstruction. This name identifies the process under which the job was started
and is likely to be a run-time property.

All of this provenance data is distinguished from the event data because its principal home
is in an ancillary database, although a copy may be readily accessible from the event data
(e.g. , within the file that contains events).

A Provenance serves to collect the relevant information describing how a given EDProduct
was created. Each EDProduct is associated (in an Event) with one Provenance.

10

1.4. EVENT FILTER 11

1.4 Event Filter

Editor(s): Emilio

1.4.1 Introduction

The CMS Trigger and Data Acquisition System (TriDAS) is designed to inspect the
detector information at the full crossing frequency and to select events at a maximum
rate of O(102) Hz for archiving and later offline analysis. The required rejection power
of O(105) is too large to be achieved in a single processing step, if a high efficiency is to
be maintained for the physics phenomena CMS plans to study. For this reason, the full
selection task is split into two steps. The first step (Level-1 Trigger) is designed to reduce
the rate of events accepted for further processing to less than 100 kHz. The second step
(High-Level Trigger or “HLT”) is designed to reduce this maximum Level-1 accept rate of
100 kHz to a final output rate of approximately 100 Hz. The design of the Level-1 Trigger
has already been extensively documented in Volume I of the TriDAS Technical Design
Report [?]. The design of the Data Acquisition System is documented in the Volume
2 [?].

The functionality of the CMS DAQ/HLT system can be summarized in three points:

• perform the readout of the front-end electronics after a Level-1 Trigger accept and
assemble data from a given bunch-crossing in a single location (the memory of a
computer);

• execute physics selection algorithms on the events read out, in order to accept the
ones with the most interesting physics content;

• forward accepted events, as well as a small sample of the rejected ones, to online
services monitoring the performance of the CMS detector

• provide the means of archiving accepted events in mass storage

1.4.1.1 DAQ Architecture Overview

The following is a schematic summary of the main functional elements as depicted in
Fig. 1.4.1.1:

• Detector Front-ends: the modules that store the data from the detector front-end
electronics upon the reception of a Level-1 Trigger accept signal.

11

12 CHAPTER 1. SOFTWARE COMPONENTS

Figure 1.2: General architecture of the CMS DAQ System

• Readout Systems: the modules that read the data from the detector Front-End and
store them, until they are sent to the processor which will analyse the event.

• Builder Network: the collection of networks that provide the interconnections be-
tween the Readout and the Filter Systems. It is a large switching fabric, capable of
supplying 800Gb/s sustained throughput to the Filter Systems.

• Event Manager: the entity responsible for controlling the Builder Network data
flow.

• Controls: all the entities responsible for the user interface and the configuration and
system monitoring of the DAQ.

• HLT Systems: the ensemble of the components providing control, input data,monitoring
and error detection services, and the processors executing High-Level Trigger algo-
rithms. Approximately 500 Builder Units receive the incoming data fragments cor-
responding to a single event and build them into full event buffers. An appropriate
number of Filter Units are connected to each Builder Unit, to provide the necessary
processing power to carry out the High-Level Trigger selection.

• Services: all the processors and networks which receive or route complete or partial
events, or online monitoring information, from the Filter Farm.

1.4.1.2 HLT System Requirements

The High-Level Trigger must reduce the event rate output by the Level-1 Trigger by a
factor 1000 for a total output to storage of 102 Hz. At the design luminosity of the LHC
this total expected to be output to mass storage, corresponds to a cross section of 10nb.
Given that the W+?e+?e production cross section alone is of this order, a significant
physics selection has to take place online. It is this aspect of the HLT system that places

12

1.4. EVENT FILTER 13

the most stringent requirements on the system. The main requirements on the system
are thus:

• The system has to provide enough bandwidth and computing resources to minimize
the dead-time at any luminosity, while maintaining the maximum possible efficiency
for the discovery signals. The current goal is to have a total dead-time of less than
2%. Half of this dead-time is currently planned to be spent in the Level-1 Trigger
system.

• The HLT system should tag selected events with specific trigger selection paths that
were satisfied. This information can then be used by the offline system for a quick
sorting of the events into physics streams.

• The system should allow for the readout, processing and storage of events that will
be needed for calibration purposes.

• The HLT efficiency should not depend strongly on changes of the calibration and
detector alignment constants. It must in any case be possible to validate trigger
selections and compute their overall efficiency using only the data itself, with as
little reference to simulation as possible.

• The system has to be flexible enough to adapt to changing run and/or fill conditions.
As an example, the instantaneous luminosity is expected to drop in the course of a
fill, and therefore an optimal allocation of resources might require to change trigger
conditions, for instance by lowering trigger thresholds or decreasing pre-scale factors
for select channels. All such changes, along with any other changes in the running
conditions, must be logged.

• The system should provide enough resources to monitor the status of the CMS de-
tector, and to provide enough information to the experimenters in case of problems.

• To maximize the efficiency of the filtering process, an event should be rejected as
soon as possible. Furthermore, the system should not rely on the presence of all the
information from the CMS detectors.

Given the unprecedented rate of online rejection, a most important task of the HLT is,
after achieving this rejection, to provide enough information on what is rejected. It is for
this reason that a major aspect of the HLT System concerns the control and monitoring
of the algorithm running in the Filter Farm.

1.4.2 Filter Farm Architecture

13

14 CHAPTER 1. SOFTWARE COMPONENTS

1.4.3 Data Flow

FIXME: Describe here the data flow from raw data input into the Filter Unit
to events out to the Storage Manager

1.4.3.1 Raw Data

Nicola FIXME: General aspects related to raw data handling (common head-
ers/trailer, conversion, fault tolerance, PERFORMANCE)

1.4.3.2 Digi

Nicola FIXME: General stuff about digis. Does it really fit here ?

1.4.3.3 Output Service and Storage Manager

Jim/Emilio

1.4.4 Control Flow

Emilio/Nicola FIXME: The place to discuss run start/stop, condition han-
dling, trigger counters etc.

1.4.4.1 Fault Tolerance, Exception Handling, Logging

FIXME: all that doesn’t fit elsewhere ?

1.5 Detector Description

Editor(s): Mike, Frank, Oliver, Chris

FIXME: 5 pages

14

1.6. SIMULATION 15

1.5.1 Overview

1.5.2 Geometry DB Schema

1.5.3 Geometry Model

1.5.3.1 Material

1.5.3.2 Readout Geometry

1.5.3.3 Interface between Framework and Detector Description for simula-
tion

1.5.3.4 Interface between Framework and Detector Description for local re-
construction

1.5.3.5 Interface between Framework and Detector Description for global
reconstruction

1.5.4 Unique Numbering schema

1.6 Simulation

Editor(s): Maya

FIXME: ∼ 7 pages

1.6.1 Introduction

The CMS detector and physics simulation is based on the geant4 simulation toolkit
and the CMS object-oriented framework and event model. geant4 provides a rich set
of physics processes describing in detail electromagnetic and hadronic interactions. It
also provides the tools for the implementation of the full CMS detector geometry and
the interfaces required for retrieving information from particle tracking in the detectors
and magnetic field. This functionality is interfaced to the CMS framework, which utilizes

15

16 CHAPTER 1. SOFTWARE COMPONENTS

the concepts of ”event setup” to create the application context in terms of detector and
magnetic field description, input services to pass the generated events to the simulation
application, module factories to select and load physics lists and miscellaneous utilities,
parameter sets for run-time configuration, and a signaling mechanism for user monitoring
actions. A framework-based event producer is responsible for loading and saving the hits
and digits from the sensitive detectors and the Monte Carlo truth in terms of particle
tracks and vertices.

The simulation manages all CMS detectors, both central (Tracker, Calorimeters and Muon
Systems) in the CMS 4 Tesla magnetic field, and forward (CASTOR calorimeter, TOTEM
telescopes, Roman Pot detectors and the Zero Degree Calorimeter, ZDC), as well as several
test-beam prototypes and layouts. It implements their sensitive detector behaviour, track
selection mechanisms, hit collection and digitization.

The simulation has been validated by comparisons with test-beam data as well as results
from its predecessor, the geant3-based program. It has been deployed since the 2004
CMS Data Challenge. More than ??? million events for various LHC physics channels
have so far been produced.

1.6.2 Simulation Data Flow

1.6.3 Event Generators

FIXME: Parameters for pile-up and underlying event. Save detailed discussion
of generators of physics processes for Vol. 2

In CMSSW, the Monte Carlo event will be contained in an OO class based on HepMC. The
old HEPEVT structure is abandoned. GenEvents in HepMC are based on the natural
structure of an event i.e. vertices with ingoing and outgoing particles. Iterators are
implemented for easy navigation though the event.

The events will be read in to the software from a rootuple containing HepMC events. The
rootuple is produced by the Generator Production Framework.

Most of the event generators that provide the collision events as input for the detector
simulation are still written in FORTRAN (PYTHIA, HERWIG). Several projects to write
event generators in C++ are ongoing (PYTHIA8, HERWIG++, SHERPA), and mature
code is expected by 2007.The Generator Production Framework therefore has to be able
to handle both FORTRAN and C++ generators

The design of the Generator Production Framework looks as follows:

• An input file contains all parameters needed to run the event generator. The
generator production framework reads in the input file and passes the parame-
ters to the generator.

16

1.6. SIMULATION 17

• The generation step: calling FORTRAN or C++routines.

• The conversion of HEPEVT common block to HepMC objects if needed.

• The selection of the events on HepMC level

• The persistency, i.e. writing the HepMC events in a rootuple using ROOT and
SEAL.

• The output of the generator production framework is a rootuple, containing
HepMC events.

This rootuple is then read in by the framework and the HepMC events are stored as
EDProducts (IOMC input service).

1.6.4 Geant4 Simulation and Physics Parameters

1.6.5 Pile-up Treatment

1.6.6 Detector Digitization

The digitization step, second part of the preparation of a simulated sample, consists in
the simulation of the electronic readouts used to acquire data in the DAQ system. It
starts from the positiosn and simulated energy losses in the Geant sensitive detectors,
and produces an output which needs to be as close as possible to the real data from CMS,
plus the additional Monte Carlo truth information available in the simulation production.

In tracking detectors (strips and pixels) the energy loss is distributed between the entry
and exit point in the detector module along the path, typically of the order of 10 µm,
and Landau fluctuations are taken into account. The charges are drifted to the detector
surface taking into account Lorentz drift, and diffused in the perpendicular plane. On
the detector surface, charges corresponding to each pixel or strip are integrated, and a
gaussian noise is added. Noise, if exceeding a given threshold, is also added to the other
channels. Then, couplings between channels are taken into account, and conversion to
digital counts is applied using the gain of the detector and the time with respect to the
signal bunch crossing. If zero suppression, is required, only channels with signal exceeding
a suppression threshold are saved. Additional and more specific information can be found
in ???????

In ECAl digitization, The active volumes of the ECAL, for which the deposited energy is
recorded (i.e. the output of the GEANT3/CMSIM step in the simulation chain), are the
crystals and the silicon strips. The arrival time of hits, as well as the energy deposited, is
recorded. For the crystals the variation of the light collection effi- ciency along the length
of the crystal is simulated by multiplying the energy, as it is deposited, by a nominal

17

18 CHAPTER 1. SOFTWARE COMPONENTS

longitudinal light collection curve. This is a simple function of the distance from the
crystal front-face, and is flat in the front half of the crystal, with a 5nominal curve, as
measured on production crystals, which deteriorate the energy resolution, are accounted
for by a random smearing which is added later to the energy. Additional and more specific
information can be found in ???????

In HCAL digitization, the simulation of the electronics for the HB/HE/HO starts with
the information provided from GEANT on the energies deposited in the scintillator and
their timing. The energies are converted to number of photoelectrons, and fluctuations
are applied assuming a Poisson distribution. Noise is added, Gaussian in E, equal to 1.5
photoelectrons per time sample per read out depth segment, uncorrelated between time
buckets (which corresponds to about 240MeV after the corrections described below). The
pulses from the different energy depositions (both from the current crossing and from up
to 5 previous and 3 subsequent crossings) are then added. The HF electronics uses a
conventional photomultiplier tube instead of a hybrid photodiode, but nevertheless the
same electronics as for the HB/HE/HO is used. The HF pulse shape is short enough to be
entirely contained in one bunch crossing and is thus not affected by pile-up from previous
or later bunch cross- ings. The magnitude of the noise used in the HF simulation is 0.125
photoelectrons, and the ADC count size is set at 0.43 photoelectrons.

In the Muon Drift Tube system, the responses of the TDCs is the output of the digitization
step. Particular care is taken in simulating the behaviour of the drift cells as a function of
the muon direction and impact position with respect to the sense wire, and of the residual
magnetic field in the air gaps of the magnet iron yokes, where the chambers are located.
The resulting drift time is smeared so as to obtain a 4 ns resolution, corresponding to
an intrinsic cell resolution of about 220 µm, as measured in test-beam data. The TDC
output signal for the hit reconstruction was obtained from this drift time by adding the
muon time-of-flight from the collision vertex and the propagation time of the signal along
the cell wire. The average muon time-of-flight from the collision vertex to a given chamber
is assumed to have been subtracted at TDC level.

The digitization step of the Cathode Strip Chamber system involves simulating the re-
sponses of the ADCs and discriminators connected to the strips and wires. To create
the analog signals seen by the CSC wire and strip electronics, parameterizations of the
amplifier and shaper response are convoluted with the ion drift collection time. Note
that the signal may contain contributions from drifting electrons due to background hits
from other beam crossings. Cross-talk, both capacitive and resistive, is included in the
strip signal. Each strip which satisfies the Local Charged Track (LCT) comparator logic
causes the readout of a group of 16 strips in the simulation. Within such a group, noise
is simulated on the empty strips that neighbour the signal strip, and remaining empty
strips are suppressed. A readout dead time of 200ns is assumed. This differs slightly from
the actual DAQ electronics readout, where the presence of a LCT initiates the readout of
a front-end board that covers a region 16 strips wide and 6 layers deep, but the effect is
expected to be negligible. Finally, the storage of the strip signals in Switched Capacitor
Arrays (SCA) is simulated. The signal shape is sampled and stored at 8 times, each 50ns

18

1.6. SIMULATION 19

apart.

The RPC response is assumed to take place within 20 ns of the passage of a charged
particle through the detector with a 3ns Gaussian distributed jitter, which also accounts
for the contribution from the front-end electronics and the cables to the link board. The
20 ns wide time gates were adjusted in order to accommodate triggering signals. The
RPC cluster size is set to 1.5 strips.

1.6.7 Simulation Perfomance

1.6.7.1 The Physics of the Detector Simulation

High energy physics experiments depend critically on the accuracy of physics generators
and detector simulations. Simulated data events are used for detector design optimization,
calibration, object identification, and physics analysis. The size of systematic uncertain-
ties associated with particle discoveries, mass, or cross section measurements is tightly
associated with how accurately the simulations describe the actual performance of the
detector in measuring electrons, photons, and hadrons. It is imperative, for the success
of a HEP experiment, to understand and tune the physics of the simulation tool to agree
with the data measurements. Although not always explicitly mentioned, geant4 [?] sim-
ulation results are compared with test beam data, wherever available, and results from
the geant3 [?] based program.

1.6.7.2 Tracker Validation

Tracker simulation has played a key role in the development and optimization of the sim-
ulation infrastructure and the validation process. The tracker material budget, which can
only be correctly estimated with a very detailed description of all active and passive detec-
tor components, directly affects the electromagnetic calorimeter physics performance and
places stringent requirements on the accuracy of the detector description and geometry
construction. Correct, navigable Monte Carlo truth, for correct decay tree reconstructions,
as well as the proper treatment of hard electron bremmsstrahlung are of vital importance
in B-τ studies, in which the tracker plays a key role. With the above requirements sat-
isfied, tracker performance has been extensively validated in terms of tracking and hit
distributions for single particles, minimum bias, and physics events. (See Chapter 6.)

1.6.7.3 Electromagnetic Calorimeter Validation

Initial studies based on a comparison between a geant4-based simulation and test beam
data provide evidence that geant4 gives an excellent representation of electromagnetic

19

20 CHAPTER 1. SOFTWARE COMPONENTS

showers. (See Chapter 4.) Overall ECAL performance, in terms of energy and position
resolution, is dominated by effects that are not part of the shower simulation, such as
electronics noise, photostatistics, longitudinal uniformity of light collection, and crystal
inter-calibration. For this reason, only gross errors are identified by a comparison of
energy and position resolution. The largest sensitivity is to changes or errors in the
radiation and showering in the tracker material. Unfortunately the accurate simulation
of this effect cannot be validated in the test beam. The shower lateral distribution, and
its fluctuations from shower-to-shower is an important quantity which can be validated
comparing the Monte Carlo simulations with test beam measurements. In particular,
parameters sensitive to the lateral shower shape, which effects the fraction of incident
energy contained in ECAL clusters, are measured in the test beam.

1.6.7.4 Hadronic Calorimeter Validation

HCAL studies on energy resolution and linearity, e/π ratio, and shower profile are in-
strumental in geant4 hadronic physics validation, in the context of the LCG simulation
physics validation project. They are based on comparisons between single particle mea-
surements in test beam experiments and geant4 based simulations of the associated de-
tector setup. In 2002-2004, several HCAL test beam experiments exposed different HCAL
modules, preceeded by an electromagnetic calorimeter prototype, to beams of pions, elec-
trons and muons over a large energy range. (See Chapter 5). The data were compared
with geant4 simulations using the hadronic physics parametric (LHEP) and microscopic
(QGSP) models. The pion energy resolution and response linearity as a function of inci-
dent energy derived from the simulations are in good agreement with the data measure-
ment within the large systematic uncertainties in the latter. Transverse and longitudinal
shower profiles are studied in the 1996 and 2004 test beam experiments. Pion showers
predicted by geant4 are narrower than those predicted by geant3. Showers predicted
by the QGSP physics list (version 2.7) are shorter than those predicted by the LHEP
(version 3.6) list, with LHEP predictions being closer to those from geant4/Geisha.

1.6.7.5 Muon System Validation

Single muons with momenta in the 10 GeV-10 TeV range have been simulated in the
CMS detector using the geant3 and geant4 packages. While both packages are in good
agreement modeling ionisation, muon bremsstrahlung, e+e− production, and in particular,
muon-nuclear interaction are significantly different, due to newer theoretical developments
included in geant4. Multiple scattering is significantly smaller in geant4, in agreement
with experimental results [?]. geant4 results also show an improvement with respect
to geant4 in the precision of the propagation of the muons along the detector. The
production threshold on secondary particles in the different regions of the detector were
set to a large value to avoid the removal of tracks reaching the sensitive detectors. The

20

1.6. SIMULATION 21

production of hits in the simulation of the muon system was tested by comparing the
Monte Carlo predictions with test beam data.(See Chapter 3). The test beam experiment
consisted of two muons chambers with and without an iron slab in between them, to
investigate the effect of the muon showers in the pasive material. The analysis, based
on muons in the 50-300 GeV pT range, show that geant4 slightly underestimates soft
delta ray production in cell volumes, while hard delta rays and electromagnetic showers
are correctly modeled. In spite of this discrepancy, local track reconstruction efficiency
and resolution is well reproduced by the simulation.

1.6.7.6 Forward Detectors

The forward detectors, such as the CASTOR and ZDC calorimeters, and the Totem
telescopes are also incorporated to the simulation framework. They are essencial tools
for the diffractive and heavy ion programs.(See Chapter 7). For example, the ZDC is a
Cerenkov detector designed to collect any remaining neutral fragments of the colliding
nuclei and may be used as a measure of the collision centrality. In pp collisions, the ZDC
may be incorporated in the study of forward physics and photon production. Simulation
studies are underway to study issues such as energy resolution and energy leakage. Test
beam data available in October or November 2005 will allow for more systematic validation
of the simulation results. Current validation efforts involve implementation of a RHIC-
design ZDC in oscar to take advantage of existing test beam data.

1.6.7.7 Parameterized Showers

The detailed simulation of electromagnetic showers is computationally intensive. A parametriza-
tion of the spatial energy distribution of an electromagnetic shower, based on probability
density functions, allows to speed up the process without compromissing the simulation
accuracy. A shower parameterization model called Gflash, based on three probability den-
sity functions, was developed and used by the H1 experiment [?]. As part of the geant4
software distribution, Gflash is available in oscar, the CMS detector simulation package.
In CMS, GFlash is used to parameterize electrons and positrons in the barrel and endcap
electromagnetic calorimeter. Comparisons between the GFlash based and the full oscar
simulation of the energy depositions in the central crystal, and 3x3, 5x5 crystal matrices
show good agreement to the > 1% level, as illustrated in Fig. 1.6.7.7. Figures 1.4- 1.5 show
that the transverse and longitudinal shower profiles are also well modeled by Gflash to
within 1-3%. The Gflash shower parameterizations allow a significant time performance
gain in the simulation, with speed increases in the range of a factor of 3-10. The gain
in speed depends on the event type, the particle energy and the detector η region. For
instance, a single electron or photon with an energy of 100 GeV in the ECAL barrel is
simulated 10 times faster using Gflash. For a large extra dimensions full signal event,
pp → γ + G, with a single photon above 1000 GeV, the gain in speed is a factor of 4.

21

22 CHAPTER 1. SOFTWARE COMPONENTS

Energy /GeV
10 20 30 40 50 60 70

OSCAR
Entries 1000
Mean 44.12
RMS 6.657

Energy /GeV
10 20 30 40 50 60 70

#

1

10

210

310

OSCAR
Entries 1000
Mean 44.12
RMS 6.657

OSCAR+GFLASH
Entries 1000
Mean 44.44
RMS 6.903

OSCAR+GFLASH
Entries 1000
Mean 44.44
RMS 6.903

Figure 1.3: Energy depositions in a 5x5 crystal matrix for 50 GeV electrons. The his-
togram corresponts to the full geant4 simulation and the red markers to the shower
parameterization.

r [cm]
0 2 4 6 8 10 12 14 16 18 20

GEANT4
Entries 1994998
Mean 0.9413
RMS 1.522

r [cm]
0 2 4 6 8 10 12 14 16 18 20

 [
G

eV
]

d
ep

E

-310

-210

-110

1

10

210

GEANT4
Entries 1994998
Mean 0.9413
RMS 1.522

GFLASH
Entries 282519
Mean 0.9813
RMS 1.584

GFLASH
Entries 282519
Mean 0.9813
RMS 1.584

Figure 1.4: Transverse shower profiles for 50 GeV photons.

22

1.7. FAST SIMULATION 23

x [cm]
0 5 10 15 20 25 30

GEANT4
Entries 1994998
Mean 7.293
RMS 3.699

x [cm]
0 5 10 15 20 25 30

 [
G

eV
]

d
ep

E

-410

-310

-210

-110

1

10

GEANT4
Entries 1994998
Mean 7.293
RMS 3.699

GFLASH
Entries 282519
Mean 7.269
RMS 3.788

GFLASH
Entries 282519
Mean 7.269
RMS 3.788

Figure 1.5: Longitudinal shower profiles for 50 GeV photons.

1.7 Fast Simulation

Editor(s): Patrick Janot
Contributor(s): Salavat Abdullin, Florian Beaudette, Patrick Janot, Andrea
Perrotta

1.7.1 Introduction

A framework for fast simulation of particle interactions in the CMS detector, called
FAMOS, has been recently developed, and is intended to be used for most physics anal-
yses, in view of the Volume 2 of this Physics TDR and beyond. It is an object-oriented
system for which C++ has been chosen as programming language. The acronym FAMOS
stands for FAst MOnte-Carlo Simulation. As it is a work in progress, only the current
status and performance are decribed in this section.

The input of FAMOS is a list of particles (originating from an event generator or a
simple particle gun) characterized by their momentum and origin vertex, with mother and
daughter relationships to follow the various decay chains in the event. Upon user request,
each of the (quasi)-stable particles in this list is then propagated in the CMS magnetic
field to the different layers of the various CMS subdetectors, which it may interact with.
While propagating, these quasi-stable particles are also allowed to decay according to

23

24 CHAPTER 1. SOFTWARE COMPONENTS

their known branching fractions and decay kinematics. The particles resulting from the
interactions with the detector layers or from the decays in flight are added to the original
list, and propagated/decayed in the same way. Events from pileup interactions in the
same bunch crossing as the original event are read from pre-generated files, added to the
list according to a Poisson distribution with a user-defined average, and follow the same
treatment.

The interactions simulated in FAMOS are (i) electron Bremsstrahlung; (ii) photon con-
version; (iii) charged particles energy loss by ionization; (iv) charged particle multiple
scattering; and (v) electron, photon and hadron showering. The first four are applied
to particles traversing the thin layers of the tracker (Section 1.7.2), while the latter is
parametrized in the electromagnetic (Section ??) and hadron (Section ??) calorimeters.
The plans are to simulate all five interactions together with synchrotron radiation for
the muon propagation through the tracker, calorimeters and muon chambers. The cur-
rent muon simulation is, however, mostly based on a parametrization of resolutions and
efficiencies, as is explained in Section ??.

As output, FAMOS delivers series of “high-level objects”, such as reconstructed hits for
charged particles in the tracker layers, energy deposits in calorimeter cells, which can
then immediately be used as inputs of the same “higher-level algorithms” (track fitting,
calorimeter clustering, b tagging, electron identification, jet reconstruction and calibra-
tion, trigger algorithms, . . .) as in the full reconstruction and analysis package, ORCA.
This parallelism between the fast simulation and the complete reconstruction allows com-
parisons between fast and full simulations and subsequent tuning in a straightforward
manner, with the use of identical analysis programs. It also allows the development of
new reconstruction algorithms with the fast simulation, for later use in the complete
reconstruction package.

Last but not least, the computer time needed to simulate an event in FAMOS is about
three orders of magnitude smaller than that needed in the full chain, for a level of agree-
ment aimed at the percent level or below. At the time of writing, the simulation of one
LHC event in FAMOS in its highest level of sophistication takes a second or thereabout
on a 1.8GHz computer, with expected optimizations still to come.

1.7.2 Simulation of the Tracker Response

A simplified version of the tracker geometry, but deemed adequate for the required level
of accuracy, is used. Is it made of over 30 thin nested cylinders representing the sensitive
layers of, from inside to outside, the pixel detector (three barrel layers and two endcap
disks), the four tracker inner barrel layers, the three tracker inner disks, the six tracker
outer barrel layers and the nine tracker endcap disks, interleaved with non-instrumented
cylinders with dead material (cables, support, . . .). The material, assumed to be pure
Silicon, is also assumed to be uniformly distributed over each cynlinder barrel (respec-
tively, endcap). A transverse view of this simplified geometry is shown in Fig. ??a, in

24

	1 Software Components
	1.1 Overview
	1.2 Software Domain Decomposition
	1.3 Framework
	1.3.1 Introduction
	1.3.2 Design Principles
	1.3.3 Major Components
	1.3.4 Services
	1.3.4.1 EventSetup System
	1.3.4.2 EventSetup
	1.3.4.3 Records
	1.3.4.4 Contents of a Record
	1.3.4.5 EventSetup System Components
	1.3.4.6 Dependent Records

	1.3.5 Data Access Model
	1.3.5.1 Event
	1.3.5.2 Module types, communication

	1.3.6 General Characteristics
	1.3.6.1 Scheduler, Paths
	1.3.6.2 Commonalities
	1.3.6.3 The Unscheduled Application
	1.3.6.4 The Scheduled Application
	1.3.6.5 Provenance

	1.4 Event Filter
	1.4.1 Introduction
	1.4.1.1 DAQ Architecture Overview
	1.4.1.2 HLT System Requirements

	1.4.2 Filter Farm Architecture
	1.4.3 Data Flow
	1.4.3.1 Raw Data
	1.4.3.2 Digi
	1.4.3.3 Output Service and Storage Manager

	1.4.4 Control Flow
	1.4.4.1 Fault Tolerance, Exception Handling, Logging

	1.5 Detector Description
	1.5.1 Overview
	1.5.2 Geometry DB Schema
	1.5.3 Geometry Model
	1.5.3.1 Material
	1.5.3.2 Readout Geometry
	1.5.3.3 Interface between Framework and Detector Description for simulation
	1.5.3.4 Interface between Framework and Detector Description for local reconstruction
	1.5.3.5 Interface between Framework and Detector Description for global reconstruction

	1.5.4 Unique Numbering schema

	1.6 Simulation
	1.6.1 Introduction
	1.6.2 Simulation Data Flow
	1.6.3 Event Generators
	1.6.4 Geant4 Simulation and Physics Parameters
	1.6.5 Pile-up Treatment
	1.6.6 Detector Digitization
	1.6.7 Simulation Perfomance
	1.6.7.1 The Physics of the Detector Simulation
	1.6.7.2 Tracker Validation
	1.6.7.3 Electromagnetic Calorimeter Validation
	1.6.7.4 Hadronic Calorimeter Validation
	1.6.7.5 Muon System Validation
	1.6.7.6 Forward Detectors
	1.6.7.7 Parameterized Showers

	1.7 Fast Simulation
	1.7.1 Introduction
	1.7.2 Simulation of the Tracker Response

